Chapter 2, Problem 26
`}function getSectionHTML(section, chapter_number){ if (section.has_questions){ const current_section_id = ''; const active_str = current_section_id == section.id ? 'active' : ''; return `
${chapter_number}.${section.number} ${section.name}
` } return '';}function getProblemHTML(problem, appendix){ var active_str = problem.active == true ? 'active' : '' return `
`}function getProblemsHTML(problems, section_id){ var output = ''; var abc = " ABCDEFGHIJKLMNOPQRSTUWXYZ".split(""); var idx = 0; var last_problem = 0; for (let i = 0; i < problems.length; i++) { if (section_id == 0){ var times = Math.floor(idx/25)+1; var appendix = abc[idx%25+1].repeat(times) }else{ var appendix = ''; } output += getProblemHTML(problems[i], appendix) if (last_problem != problems[i].number){ idx = 1; }else{ idx = idx + 1; } last_problem = problems[i].number } return output;}function getChaptersHTML(chapters){ var output = ''; for (let i = 0; i < chapters.length; i++) { output += getChapterHTML(chapters[i]) } return output;}function getSectionsHTML(section, chapter_number){ var output = ''; for (let i = 0; i < section.length; i++) { output += getSectionHTML(section[i], chapter_number) } return output;}$(function(){ $.ajax({ url: `/api/v1/chapters/`, data:{ book_id : '28691' }, method: 'GET', success: function(res){ $("#book-chapters").html(getChaptersHTML(res)); $(".collapsable-chapter-arrow").on('click',function(e){ var section = $(this).siblings(".section-container"); var chapter_id = $(this).data('chapter-id') var chapter_number = $(this).data('chapter-number') if(section.is(":visible")){ $(this).removeClass('open'); section.hide('slow'); }else{ $(this).addClass('open'); section.show('slow') if (section.children('li').length == 0){ $.ajax({ url: `/api/v1/sections/`, data:{ chapter_id : chapter_id }, method: 'GET', success: function(res){ section.html(getSectionsHTML(res, chapter_number)) $(".collapsable-section-arrow").off('click').on('click',function(e){ var problems = $(this).siblings(".problem-container"); if(problems.is(":visible")){ $(this).removeClass('open'); problems.hide('slow'); }else{ var section_id = $(this).data('section-id'); var question_id = $(this).data('current-problem'); $(this).addClass('open'); problems.show('slow') if (problems.children('li').length == 0){ $.ajax({ url: `/api/v1/section/problems/`, data:{ section_id : section_id, question_id: question_id }, method: 'GET', success: function(res){ problems.html(getProblemsHTML(res, section_id)) }, error: function(err){ console.log(err); } }); } } }); if(first_section_load){ $(".collapsable-arrow.open").siblings(".section-container").find(`.collapsable-section-arrow[data-section-id=${current_section}]`).click(); first_section_load = false; } }, error: function(err){ console.log(err); } }); } } }); if(current_chapter && first_chapter_load){ $(`.collapsable-chapter-arrow[data-chapter-id=${current_chapter}]`).click(); first_chapter_load = false; } }, error: function(err){ console.log(err); } }); });
Question
Answered step-by-step
Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection $y$ (m) can be computed with
$$
y=\frac{w_0}{120 E I L}\left(-x^5+2 L^2 x^3-L^4 x\right)
$$
where $E=$ the modulus of elasticity and $I=$ the moment of inertia $\left(\mathrm{m}^4\right)$. Employ this equation and calculus to generate MATLAB plots of the following quantities
$$
\begin{aligned}
& \text { (b) }>>=4: 2: 12 ;
\end{aligned}
$$
$$
\begin{aligned}
& \gg \operatorname{sum}(q) * r(2,3)
\end{aligned}
$$
versus distance along the beam:
(a) displacement $(y)$,
(b) slope $[\theta(x)=d y / d x]$,
(c) moment $\left[M(x)=E I d^2 y / d x^2\right]$,
(d) shear $\left[V(x)=E I d^3 y / d x^3\right]$, and
(e) loading $\left[w(x)=-\right.$ EId $\left.^4 y / d x^4\right]$.
Use the following parameters for your computation: $L=600 \mathrm{~cm}, E=50,000$ $\mathrm{kN} / \mathrm{cm}^2, I=30,000 \mathrm{~cm}^4, w_0=2.5 \mathrm{kN} / \mathrm{cm}$, and $\Delta x=10 \mathrm{~cm}$. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots.
Check back soon!
Video Answer
Get the answer to your homework problem.
Try Numerade free for 7 days
Input your name and email to request the answer
Like
Report
Request a Custom Video Solution
We will assign your question to a Numerade educator to answer.
Answer Delivery Time
Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection $y$ (m) can be computed with$$y=\frac{w_0}{120 E I L}\left(-x^5+2 L^2 x^3-L^4 x\right)$$where $E=$ the modulus of elasticity and $I=$ the moment of inertia $\left(\mathrm{m}^4\right)$. Employ this equation and calculus to generate MATLAB plots of the following quantities$$\begin{aligned}& \text { (b) }>>=4: 2: 12 ;\end{aligned}$$$$\begin{aligned}& \gg \operatorname{sum}(q) * r(2,3)\end{aligned}$$versus distance along the beam:(a) displacement $(y)$,(b) slope $[\theta(x)=d y / d x]$,(c) moment $\left[M(x)=E I d^2 y / d x^2\right]$,(d) shear $\left[V(x)=E I d^3 y / d x^3\right]$, and(e) loading $\left[w(x)=-\right.$ EId $\left.^4 y / d x^4\right]$.Use the following parameters for your computation: $L=600 \mathrm{~cm}, E=50,000$ $\mathrm{kN} / \mathrm{cm}^2, I=30,000 \mathrm{~cm}^4, w_0=2.5 \mathrm{kN} / \mathrm{cm}$, and $\Delta x=10 \mathrm{~cm}$. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots.
We’ll notify you at this email when your answer is ready.
Video Answers to Similar Questions
Best Matched Videos Solved By Our Expert Educators
More Solved Questions in Your Textbook
Not your book?
Applied Numerical Methods with MATLAB for Engineers and Scientists
Chapter 2
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Sections
Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20 Problem 21 Problem 22 Problem 23 Problem 24 Problem 25 Problem 26 Problem 27 Problem 28