Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inerti (2024)

Applied Numerical Methods with MATLAB for Engineers and Scientists Steven C. Chapra 5th Edition

Chapter 2, Problem 26

`}function getSectionHTML(section, chapter_number){ if (section.has_questions){ const current_section_id = ''; const active_str = current_section_id == section.id ? 'active' : ''; return `

  • ${chapter_number}.${section.number} ${section.name}

  • ` } return '';}function getProblemHTML(problem, appendix){ var active_str = problem.active == true ? 'active' : '' return `

  • Problem ${problem.number}${appendix}
  • `}function getProblemsHTML(problems, section_id){ var output = ''; var abc = " ABCDEFGHIJKLMNOPQRSTUWXYZ".split(""); var idx = 0; var last_problem = 0; for (let i = 0; i < problems.length; i++) { if (section_id == 0){ var times = Math.floor(idx/25)+1; var appendix = abc[idx%25+1].repeat(times) }else{ var appendix = ''; } output += getProblemHTML(problems[i], appendix) if (last_problem != problems[i].number){ idx = 1; }else{ idx = idx + 1; } last_problem = problems[i].number } return output;}function getChaptersHTML(chapters){ var output = ''; for (let i = 0; i < chapters.length; i++) { output += getChapterHTML(chapters[i]) } return output;}function getSectionsHTML(section, chapter_number){ var output = ''; for (let i = 0; i < section.length; i++) { output += getSectionHTML(section[i], chapter_number) } return output;}$(function(){ $.ajax({ url: `/api/v1/chapters/`, data:{ book_id : '28691' }, method: 'GET', success: function(res){ $("#book-chapters").html(getChaptersHTML(res)); $(".collapsable-chapter-arrow").on('click',function(e){ var section = $(this).siblings(".section-container"); var chapter_id = $(this).data('chapter-id') var chapter_number = $(this).data('chapter-number') if(section.is(":visible")){ $(this).removeClass('open'); section.hide('slow'); }else{ $(this).addClass('open'); section.show('slow') if (section.children('li').length == 0){ $.ajax({ url: `/api/v1/sections/`, data:{ chapter_id : chapter_id }, method: 'GET', success: function(res){ section.html(getSectionsHTML(res, chapter_number)) $(".collapsable-section-arrow").off('click').on('click',function(e){ var problems = $(this).siblings(".problem-container"); if(problems.is(":visible")){ $(this).removeClass('open'); problems.hide('slow'); }else{ var section_id = $(this).data('section-id'); var question_id = $(this).data('current-problem'); $(this).addClass('open'); problems.show('slow') if (problems.children('li').length == 0){ $.ajax({ url: `/api/v1/section/problems/`, data:{ section_id : section_id, question_id: question_id }, method: 'GET', success: function(res){ problems.html(getProblemsHTML(res, section_id)) }, error: function(err){ console.log(err); } }); } } }); if(first_section_load){ $(".collapsable-arrow.open").siblings(".section-container").find(`.collapsable-section-arrow[data-section-id=${current_section}]`).click(); first_section_load = false; } }, error: function(err){ console.log(err); } }); } } }); if(current_chapter && first_chapter_load){ $(`.collapsable-chapter-arrow[data-chapter-id=${current_chapter}]`).click(); first_chapter_load = false; } }, error: function(err){ console.log(err); } }); });

    Problem 26 The butterfly curve is given by the following pa…

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (2)

    Question

    Answered step-by-step

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection $y$ (m) can be computed with

    $$
    y=\frac{w_0}{120 E I L}\left(-x^5+2 L^2 x^3-L^4 x\right)
    $$

    where $E=$ the modulus of elasticity and $I=$ the moment of inertia $\left(\mathrm{m}^4\right)$. Employ this equation and calculus to generate MATLAB plots of the following quantities
    $$
    \begin{aligned}
    & \text { (b) }>>=4: 2: 12 ;
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \gg \operatorname{sum}(q) * r(2,3)
    \end{aligned}
    $$
    versus distance along the beam:
    (a) displacement $(y)$,
    (b) slope $[\theta(x)=d y / d x]$,
    (c) moment $\left[M(x)=E I d^2 y / d x^2\right]$,
    (d) shear $\left[V(x)=E I d^3 y / d x^3\right]$, and
    (e) loading $\left[w(x)=-\right.$ EId $\left.^4 y / d x^4\right]$.
    Use the following parameters for your computation: $L=600 \mathrm{~cm}, E=50,000$ $\mathrm{kN} / \mathrm{cm}^2, I=30,000 \mathrm{~cm}^4, w_0=2.5 \mathrm{kN} / \mathrm{cm}$, and $\Delta x=10 \mathrm{~cm}$. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots.

    Check back soon!

    Video Answer

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (3) Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (4) Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (5)

    17 people are viewing now

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (6)

    Get the answer to your homework problem.

    Try Numerade free for 7 days

    Input your name and email to request the answer

    Numerade Educator

    Answered on 08/20/2024

    Like

    Report

    Request a Custom Video Solution

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (7)

    We will assign your question to a Numerade educator to answer.

    Answer Delivery Time

    Est. 2-3 hours
    You are asking at 3:30PM Today

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection $y$ (m) can be computed with$$y=\frac{w_0}{120 E I L}\left(-x^5+2 L^2 x^3-L^4 x\right)$$where $E=$ the modulus of elasticity and $I=$ the moment of inertia $\left(\mathrm{m}^4\right)$. Employ this equation and calculus to generate MATLAB plots of the following quantities$$\begin{aligned}& \text { (b) }>>=4: 2: 12 ;\end{aligned}$$$$\begin{aligned}& \gg \operatorname{sum}(q) * r(2,3)\end{aligned}$$versus distance along the beam:(a) displacement $(y)$,(b) slope $[\theta(x)=d y / d x]$,(c) moment $\left[M(x)=E I d^2 y / d x^2\right]$,(d) shear $\left[V(x)=E I d^3 y / d x^3\right]$, and(e) loading $\left[w(x)=-\right.$ EId $\left.^4 y / d x^4\right]$.Use the following parameters for your computation: $L=600 \mathrm{~cm}, E=50,000$ $\mathrm{kN} / \mathrm{cm}^2, I=30,000 \mathrm{~cm}^4, w_0=2.5 \mathrm{kN} / \mathrm{cm}$, and $\Delta x=10 \mathrm{~cm}$. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots.

    We’ll notify you at this email when your answer is ready.

    Video Answers to Similar Questions

    Best Matched Videos Solved By Our Expert Educators

    More Solved Questions in Your Textbook

    Not your book?

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (8)

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inertia (m^4). Employ this equation and calculus to generate MATLAB plots of the following quantities (b) >>=4: 2: 12 ; ≫sum(q) * r(2,3) versus distance along the beam: (a) displacement (y), (b) slope [θ(x)=d y / d x], (c) moment [M(x)=E I d^2 y / d x^2], (d) shear [V(x)=E I d^3 y / d x^3], and (e) loading [w(x)=-. EId .^4 y / d x^4]. Use the following parameters for your computation: L=600 cm, E=50,000 kN / cm^2, I=30,000 cm^4, w0=2.5 kN / cm, and Δx=10 cm. Employ the subplot function to display all the plots vertically on the same page in the order (a) to (e). Include labels and use consistent MKS units when developing the plots. | Numerade (9)

    Applied Numerical Methods with MATLAB for Engineers and Scientists

    Steven C. Chapra 5th Edition

    Chapter 2

    Chapter 1

    Chapter 2

    Chapter 3

    Chapter 4

    Chapter 5

    Chapter 6

    Chapter 7

    Chapter 8

    Chapter 9

    Chapter 10

    Chapter 11

    Chapter 12

    Chapter 13

    Chapter 14

    Chapter 15

    Chapter 16

    Chapter 17

    Chapter 18

    Chapter 19

    Chapter 20

    Chapter 21

    Chapter 22

    Chapter 23

    Chapter 24

    Sections

    Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20 Problem 21 Problem 22 Problem 23 Problem 24 Problem 25 Problem 26 Problem 27 Problem 28

    Figure P2.26a shows a uniform beam subject to a linearly increasing distributed load. As depicted in Fig. P2.26b, deflection y (m) can be computed with y=(w0)/(120 E I L)(-x^5+2 L^2 x^3-L^4 x) where E= the modulus of elasticity and I= the moment of inerti (2024)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Errol Quitzon

    Last Updated:

    Views: 5623

    Rating: 4.9 / 5 (79 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Errol Quitzon

    Birthday: 1993-04-02

    Address: 70604 Haley Lane, Port Weldonside, TN 99233-0942

    Phone: +9665282866296

    Job: Product Retail Agent

    Hobby: Computer programming, Horseback riding, Hooping, Dance, Ice skating, Backpacking, Rafting

    Introduction: My name is Errol Quitzon, I am a fair, cute, fancy, clean, attractive, sparkling, kind person who loves writing and wants to share my knowledge and understanding with you.